
behave-django Documentation
Release 1.4.0

Mitchel Cabuloy

Jan 09, 2022

Contents

1 Features 3

2 Contents 5
2.1 Installation . 5
2.2 Getting Started . 5
2.3 Web Browser Automation . 6
2.4 Django’s Test Client . 7
2.5 Test Isolation . 7
2.6 Fixture Loading . 8
2.7 Using Page Objects . 9
2.8 Environment Setup . 11
2.9 Configuration . 11
2.10 Contributing . 12

3 Version Support 15

4 Indices and tables 17

i

ii

behave-django Documentation, Release 1.4.0

Behave BDD integration for Django

Contents 1

https://travis-ci.org/behave/behave-django
https://www.codacy.com/app/behave-contrib/behave-django
https://pypi.python.org/pypi/behave-django
https://github.com/behave/behave-django/blob/master/LICENSE
https://readthedocs.org/projects/behave-django/
https://gitter.im/behave/behave-django

behave-django Documentation, Release 1.4.0

2 Contents

CHAPTER 1

Features

• Web Browser Automation ready

• Database transactions per scenario

• Use Django’s testing client

• Use unittest + Django assert library

• Use behave’s command line arguments

• Use behave’s configuration file

• Fixture loading

• Page objects

3

behave-django Documentation, Release 1.4.0

4 Chapter 1. Features

CHAPTER 2

Contents

2.1 Installation

Install using pip

$ pip install behave-django

Add behave_django to your INSTALLED_APPS

INSTALLED_APPS += ['behave_django']

2.2 Getting Started

Create the features directory in your project’s root directory. (Next to manage.py)

features/
steps/

your_steps.py
environment.py
your-feature.feature

Run python manage.py behave:

$ python manage.py behave
Creating test database for alias 'default'...
Feature: Running tests # features/running-tests.feature:1

In order to prove that behave-django works
As the Maintainer
I want to test running behave against this features directory
Scenario: The Test # features/running-tests.feature:6
Given this step exists # features/steps/running_tests.py:4 0.000s

(continues on next page)

5

behave-django Documentation, Release 1.4.0

(continued from previous page)

When I run "python manage.py behave" # features/steps/running_tests.py:9 0.000s
Then I should see the behave tests run # features/steps/running_tests.py:14 0.000s

1 features passed, 0 failed, 0 skipped
1 scenarios passed, 0 failed, 0 skipped
3 steps passed, 0 failed, 0 skipped, 0 undefined
Took.010s
Destroying test database for alias 'default'...

See the environment.py, running-tests.feature and steps/running_tests.py files in the features folder of the project
repository for implementation details of this very example. See the folder also for more useful examples.

2.2.1 Alternative folder structure

For larger projects, specifically those that also have other types of tests, it’s recommended to use a more sophisticated
folder structure, e.g.

tests/
acceptance/

features/
example.feature

steps/
given.py
then.py
when.py

environment.py

Your behave configuration should then look something like this:

[behave]
paths = tests/acceptance
junit_directory = tests/reports
junit = yes

This way you’ll be able to cleanly accommodate unit tests, integration tests, field tests, penetration tests, etc. and test
reports in a single tests folder.

Note: The behave docs provide additional helpful information on using behave with Django and various test automa-
tion libraries.

2.3 Web Browser Automation

You can access the test HTTP server from your preferred web automation library via context.base_url. Alterna-
tively, you can use context.get_url(), which is a helper function for absolute paths and reversing URLs in your
Django project. It takes an absolute path, a view name, or a model as an argument, similar to django.shortcuts.redirect.

Examples:

Using Splinter
@when(u'I visit "{page}"')
def visit(context, page):

context.browser.visit(context.get_url(page))

6 Chapter 2. Contents

https://github.com/behave/behave-django/blob/master/tests/acceptance/environment.py
https://github.com/behave/behave-django/blob/master/tests/acceptance/features/running-tests.feature
https://github.com/behave/behave-django/blob/master/tests/acceptance/steps/running_tests.py
https://github.com/behave/behave-django/tree/master/tests/acceptance/features
https://behave.readthedocs.io/en/latest/practical_tips.html
https://docs.djangoproject.com/en/stable/topics/http/shortcuts/#redirect

behave-django Documentation, Release 1.4.0

Get context.base_url
context.get_url()
Get context.base_url + '/absolute/url/here'
context.get_url('/absolute/url/here')
Get context.base_url + reverse('view-name')
context.get_url('view-name')
Get context.base_url + reverse('view-name', 'with args', and='kwargs')
context.get_url('view-name', 'with args', and='kwargs')
Get context.base_url + model_instance.get_absolute_url()
context.get_url(model_instance)

2.4 Django’s Test Client

Internally, Django’s TestCase is used to maintain the test environment. You can access the TestCase instance via
context.test.

Using Django's testing client
@when(u'I visit "{url}"')
def visit(context, url):

save response in context for next step
context.response = context.test.client.get(url)

2.4.1 Simple testing

If you only use Django’s test client then behave tests can run much quicker with the --simple command line option.
In this case transaction rollback is used for test automation instead of flushing the database after each scenario, just
like in Django’s standard TestCase.

No HTTP server is started during the simple testing, so you can’t use web browser automation. Accessing context.
base_url or calling context.get_url() will raise an exception.

2.4.2 unittest + Django assert library

Additionally, you can utilize unittest and Django’s assert library.

@then(u'I should see "{text}"')
def visit(context, text):

compare with response from ``when`` step
response = context.response
context.test.assertContains(response, text)

2.5 Test Isolation

2.5.1 Database transactions per scenario

Each scenario is run inside a database transaction, just like your regular TestCases. So you can do something like:

2.4. Django’s Test Client 7

behave-django Documentation, Release 1.4.0

@given(u'user "{username}" exists')
def create_user(context, username):

This won't be here for the next scenario
User.objects.create_user(username=username, password='correcthorsebatterystaple')

And you don’t have to clean the database yourself.

2.6 Fixture Loading

behave-django can load your fixtures for you per feature/scenario. There are two approaches to this:

• loading the fixtures in environment.py, or

• using a decorator on your step function

2.6.1 Fixtures in environment.py

In environment.py we can load our context with the fixtures array.

def before_all(context):
context.fixtures = ['user-data.json']

This fixture would then be loaded before every scenario.

If you wanted different fixtures for different scenarios:

def before_scenario(context, scenario):
if scenario.name == 'User login with valid credentials':

context.fixtures = ['user-data.json']
elif scenario.name == 'Check out cart':

context.fixtures = ['user-data.json', 'store.json', 'cart.json']
else:

Resetting fixtures, otherwise previously set fixtures carry
over to subsequent scenarios.
context.fixtures = []

You could also have fixtures per Feature too

def before_feature(context, feature):
if feature.name == 'Login':

context.fixtures = ['user-data.json']
This works because behave will use the same context for
everything below Feature. (Scenarios, Outlines, Backgrounds)

else:
Resetting fixtures, otherwise previously set fixtures carry
over to subsequent features.
context.fixtures = []

Of course, since context.fixtures is really just a list, you can mutate it however you want, it will only be
processed upon leaving the before_scenario() function of your environment.py file. Just keep in mind
that it does not reset between features or scenarios, unless explicitly done so (as shown in the examples above).

Note: If you provide initial data via Python code using the ORM you need to place these calls in
before_scenario() even if the data is meant to be used on the whole feature. This is because Django’s

8 Chapter 2. Contents

https://docs.djangoproject.com/en/stable/topics/testing/tools/#fixture-loading

behave-django Documentation, Release 1.4.0

LiveServerTestCase resets the test database after each scenario.

2.6.2 Fixtures using a decorator

You can define Django fixtures using a function decorator. The decorator will load the fixtures in the
before_scenario, as documented above. It is merely a convenient way to keep fixtures close to your steps.

from behave_django.decorators import fixtures

@fixtures('users.json')
@when('someone does something')
def step_impl(context):

pass

Note: Fixtures included with the decorator will apply to all other steps that they share a scenario with. This is because
behave-django needs to provide them to the test environment before processing the particular scenario.

2.6.3 Support for multiple databases

By default, Django only loads fixtures into the default database.

Use before_scenario to load the fixtures in all of the databases you have configured if your tests rely on the
fixtures being loaded in all of them.

def before_scenario(context, scenario):
context.databases = '__all__'

You can read more about it in the Multiple database docs.

2.7 Using Page Objects

Warning: This is an alpha feature. It may be removed or its underlying implementation changed without a
deprecation process! Please follow the discussions in related issues or on Gitter if you plan to use it.

With behave-django you can use the Page Object pattern and work on a natural abstraction layer for the content or
behavior your web application produces. This is a popular approach to make your tests more stable and your code
easier to read.

FILE: steps/pageobjects/pages.py
from behave_django.pageobject import PageObject, Link

class Welcome(PageObject):
page = 'home' # view name, model or URL path
elements = {

'about': Link(css='footer a[role=about]'),
}

(continues on next page)

2.7. Using Page Objects 9

https://docs.djangoproject.com/en/stable/howto/initial-data/#providing-data-with-fixtures
https://docs.djangoproject.com/en/stable/topics/testing/tools/#multi-database-support
https://github.com/behave/behave-django/issues
https://gitter.im/behave/behave-django
https://www.martinfowler.com/bliki/PageObject.html

behave-django Documentation, Release 1.4.0

(continued from previous page)

class About(PageObject):
page = 'about'

FILE: steps/welcome.py
from pageobjects.pages import About, Welcome

@given(u'I am on the Welcome page')
def step_impl(context):

context.welcome_page = Welcome(context)
assert context.welcome_page.response.status_code == 200

@when(u'I click on the "About" link')
def step_impl(context):

context.target_page = \
context.welcome_page.get_link('about').click()

assert context.target_page.response.status_code == 200

@then(u'The About page is loaded')
def step_impl(context):

assert About(context) == context.target_page

A PageObject instance automatically loads and parses the page you specify by its page attribute. You then have
access to the following attributes:

request The HTTP request used by the Django test client to fetch the document. This is merely a convenient alias
for response.request.

response The Django test client’s HTTP response object. Use this to verify the actual HTTP response related to
the retrieved document.

document The parsed content of the response. This is, technically speaking, a Beautiful Soup object. You can use
this to access and verify any part of the document content, though it’s recommended that you only access the
elements you specify with the elements attribute, using the appropriate helper methods.

Helpers to access your page object’s elements:

get_link(name) -> Link A subdocument representing a HTML anchor link, retrieved from document using
the CSS selector specified in elements[name]. The returned Link object provides a click() method to
trigger loading the link’s URL, which again returns a PageObject.

Note: behave-django’s PageObject is a headless page object, meaning that it doesn’t use Selenium to drive the user
interface.

If you need a page object that encapsulates Selenium you may take a look at alternative libraries, such as page-object,
page-objects or selenium-page-factory. But keep in mind that this is a different kind of testing:

• You’ll be testing the Web browser, hence for Web browser compatibility.

• Preparing an environment for test automation will be laborious.

• Mocking objects in your tests will be difficult, if not impossible.

• Your tests will be significantly slower and potentially brittle.

Think twice if that is really what you need. In most cases you’ll be better off testing your Django application code
only. That’s when you would use Django’s test client and our headless page object.

10 Chapter 2. Contents

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://github.com/behave/behave-django/blob/master/behave_django/pageobject.py
https://pypi.org/project/page-object/
https://pypi.org/project/page-objects/
https://pypi.org/project/selenium-page-factory/
https://docs.djangoproject.com/en/stable/topics/testing/tools/#the-test-client

behave-django Documentation, Release 1.4.0

2.8 Environment Setup

2.8.1 django_ready hook

You can add a django_ready function in your environment.py file in case you want to make per-scenario
changes inside a transaction.

For example, if you have factories you want to instantiate on a per-scenario basis, you can initialize them in
environment.py like this:

from myapp.main.tests.factories import UserFactory, RandomContentFactory

def django_ready(context, scenario):
This function is run inside the transaction
UserFactory(username='user1')
UserFactory(username='user2')
RandomContentFactory()

Or maybe you want to modify the test instance:

from rest_framework.test import APIClient

def django_ready(context, scenario):
context.test.client = APIClient()

2.9 Configuration

2.9.1 Command line options

You can use regular behave command line options with the behave management command.

$ python manage.py behave --tags @wip

Additional command line options provided by behave-django:

--use-existing-database

Don’t create a test database, and use the database of your default runserver instead. USE AT YOUR OWN RISK! Only
use this option for testing against a copy of your production database or other valuable data. Your tests may destroy
your data irrecoverably.

--keepdb

Starting with Django 1.8, the --keepdb flag was added to manage.py test to facilitate faster testing by using
the existing database instead of recreating it each time you run the test. This flag enables manage.py behave
--keepdb to take advantage of that feature. More information about --keepdb.

2.8. Environment Setup 11

https://factoryboy.readthedocs.io/en/latest/
https://docs.djangoproject.com/en/stable/topics/testing/overview/#the-test-database

behave-django Documentation, Release 1.4.0

--simple

Use Django’s simple TestCase which rolls back the database transaction after each scenario instead of flushing the
entire database. Tests run much quicker, however HTTP server is not started and therefore web browser automation is
not available.

2.9.2 Behave configuration file

You can use behave’s configuration file. Just create a behave.ini, .behaverc, setup.cfg or tox.ini file
in your project’s root directory and behave will pick it up. You can read more about it in the behave docs.

For example, if you want to have your features directory somewhere else. In your .behaverc file, you can put

[behave]
paths=my_project/apps/accounts/features/

my_project/apps/polls/features/

Behave should now look for your features in those folders.

2.10 Contributing

Want to help out with behave-django? Cool! Here’s a quick guide to do just that.

2.10.1 Preparation

Fork, then clone the repo:

$ git clone git@github.com:your-username/behave-django.git

Ensure Tox is installed. We use it to run linters, run the tests and generate the docs:

$ pip install tox

2.10.2 Essentials

Make sure the tests pass. The @failing tag is used for tests that are supposed to fail. The
@requires-live-http tag is used for tests that can’t run with --simple flag. See the [testenv] section in
tox.ini for details.

$ tox -lv # show all Tox targets
$ tox -e py37-django22 # run just a single target
$ tox # run all linting and tests

2.10.3 Getting your hands dirty

Start your topic branch:

$ git checkout -b your-topic-branch

Make your changes. Add tests for your change. Make the tests pass:

12 Chapter 2. Contents

https://behave.readthedocs.io/en/latest/behave.html#configuration-files

behave-django Documentation, Release 1.4.0

$ tox -e behave-latest

Finally, make sure your tests pass on all the configurations behave-django supports. This is defined in tox.ini. The
Python versions you test against need to be available in your PATH.

$ tox

You can choose not to run all tox tests and let the CI server take care about that. In this case make sure your tests pass
when you push your changes and open the PR.

2.10.4 Documentation changes

If you make changes to the documentation generate it locally and take a look at the results. Sphinx builds the output
in docs/_build/.

$ tox -e docs
$ python -m webbrowser -t docs/_build/html/index.html

2.10.5 Finally

Push to your fork and submit a pull request.

To clean up behind you, you can run:

$ tox -e clean

2.10.6 Other things to note

• Write tests.

• Your tests don’t have to be behave tests. :-)

• We’re using PEP8 as our code style guide (flake8 will run over the code on the CI server).

Thank you!

2.10. Contributing 13

https://github.com/behave/behave-django/compare/

behave-django Documentation, Release 1.4.0

14 Chapter 2. Contents

CHAPTER 3

Version Support

behave-django is tested against the officially supported combinations of Python and Django (Django 2.2, 3.0 on Python
3.5, 3.6, 3.7, 3.8).

The version of behave is not tied to our integration (read: “independent”). We test against the latest release on PyPI,
and run a sample against Behave’s current master branch.

15

https://travis-ci.org/behave/behave-django
https://pypi.python.org/pypi/behave

behave-django Documentation, Release 1.4.0

16 Chapter 3. Version Support

CHAPTER 4

Indices and tables

• search

17

	Features
	Contents
	Installation
	Getting Started
	Web Browser Automation
	Django’s Test Client
	Test Isolation
	Fixture Loading
	Using Page Objects
	Environment Setup
	Configuration
	Contributing

	Version Support
	Indices and tables

